John A List, Azeem M Shaikh, Atom Vayalinkal
Cited by*: None Downloads*: None

List et al. (2019) provides a framework for testing multiple null hypotheses simultaneously using experimental data in which simple random sampling is used to assign treatment status to units. As in List et al. (2019), we rely on general results in Romano and Wolf (2010) to develop under weak assumptions a procedure that (i) asymptotically controls the familywise error rate – the probability of one or more false rejections – and (ii) is asymptotically balanced in that the marginal probability of rejecting any true null hypothesis is approximately equal in large samples. Our analysis departs from List et al. (2019) in that it further exploits observed, baseline covariates. The precise way in which these covariates are incorporated is based upon results in Ye et al. (2022) in order to ensure that inferences are typically more powerful in large samples.
Majid Ahmadi, Nathan Durst, Jeff Lachman, Mason List, Noah List, John A List, Atom Vayalinkal
Cited by*: None Downloads*: None

Recent models and empirical work on network formation emphasize the importance of propinquity in producing strong interpersonal connections. Yet, one might wonder how deep such insights run, as thus far empirical results rely on survey and lab-based evidence. In this study, we examine propinquity in a high-stakes setting of talent allocation: the Major League Baseball (MLB) Draft. We examine draft picks from 2000-2019 across every MLB club of the nearly 30,000 players drafted (from a player pool of more than a million potential draftees). Our findings can be summarized in three parts. First, propinquity is alive and well in our setting, and spans even the latter years of our sample, when higher-level statistical exercises have become the norm rather than the exception. Second, the measured effect size is important, as MLB clubs pay a real cost in terms of inferior talent acquired due to propinquity bias: for example, their draft picks appear in 25 fewer games relative to teams that do not exhibit propinquity bias. Finally, the effect is found to be the most pronounced in later rounds of the draft (after round 15), where the Scouting Director has the greatest latitude.
  • 1 of 1